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Abstract. Sometimes, descriptive and empirical agent-based models
contain sub-models of variables whose change over time cannot be easily
modelled. Due to a frequent lack of long-term data, especially on de-
mographic change, often logical design principles are used for modeling
such changes. The problem with these modeling principles is that many of
them exist and the choice is a difficult one. We would like to illustrate in
this article that this choice has consequences, using the example of farm
agent aging sub-models in an existing land-use change model. We will
show that different design principles lead to different long-term changes
in age pattern. The problem here is that one cannot be sure where the
change in age structure comes from, i.e. whether it is an account of real-
world change and/or whether it is caused by model assumptions. Then,
we will show that simulated land-use change is highly sensitive to the
type of aging sub-model. As a solution, we develop an alternative aging
sub-model that exactly maintains an age pattern externally prescribed,
but still allows individual aging.

Keywords: agent-based modelling, accuracy, critique, agent age, de-
mography

1 Introduction

Although empirical agent-based models have often been rigorously built on snap-
shot survey data (e.g. [10], [13], [2]), a difficulty that often appears is how to
model agent variables whose changes over time cannot be easily modelled using
such data. Especially demographic variables, such as agent age, household size,
household labor, but also animal stocks, etc., are difficult to model without a
long-term database. Many approaches to circumvent this difficulty exist, and
nearly every model has its own approach. However, we believe that the way we
modellers circumvent the problem of unknown data can have consequences for
model credibility and accuracy. In this article, we aim to demonstrate that dif-
ferent approaches to model change of age of farm agents can have far-reaching
consequences for simulation results. We will show that different existing mod-
els of agent aging converge to different age structures using the same database,
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where it is not clear whether real-world change was simulated, and/or whether
the change was caused by model assumptions. Further, we will illustrate in a
case study that the change of aging model in an existing empirical agent-based
model of land-use change can have drastic consequences for simulation results.
We offer a solution for this problem, via developing and implementing an aging
model that is able to control assumptions made.

In section 2, we review models of aging for farm agents, and the problem is
described. In section 4, we offer an improved model to deal with the described
problem, and in section 4, we illustrate with a case study what consequences
the choice of model can have for simulation results. Finally, we conclude that
modellers should be more self-critical when developing algorithms for unknown
variable change.

2 Problem Analysis

We reviewed existing algorithms to model the change of age of farming agents.
Doing so, we constricted ourselves to simple algorithms whose dynamics consist
of agents’ aging, death and replacement, not including algorithms that explicitly
model mating and reproduction during lifetime. We excluded the latter because
these can be regarded as sophisticated enough to replicate human reproduction
explicitly - a quality that we think the former does not have. For each reviewed
algorithm class we identified the modeling principle in order to be able to adapt
the corresponding algorithm to our case study. Since in peer-reviewed articles
the aging algorithm is often not explained in sufficient detail, the review was
mainly limited to dissertations and master theses.

We start with the simplest idea of modeling the aging process of farming
agents. None of the reviewed models in fact implemented it, but we found it
worth examining, because it sounds straightforward but has an oblique rub in
it. The algorithm consists of the replacement of agents that reach a certain
age by young agents (equation 1). For simplicity, we only reset the age of the
”dying” agent instead of deleting and recreating an agent. This applies to the
entire remainder of the text.

If Hage > Ageold then Hage 7→ Ageyoung (1)

where Ageold is the death age and Ageyoung the age of agents starting farming.
The rationale behind this algorithm is that in many real-world systems the

role an agent has assumed during lifetime does not vanish with agent death,
but is often only refilled with a younger agent. The question seems to be just
where to set the death age and the age of the succeeding agent. But the more
subtle problem is that this algorithm is not able to maintain the age distribution
of the agent population when the distribution is non-uniform. What happens to
non-uniform distributions is that the distribution form as such is maintained but
simply shifts with age over time, while disappearing at old age and reappearing
at young age (Figure 1).
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In reviewed models on farming agents, this issue has been approached differ-
ently. We identified three different principles that suggest how to model aging
more realistically. The first has been applied by the LUDAS (Land Use DynAmic
Simulator) family (e.g. [10], [6]), where agents, when reaching the maximum age,
are assigned an age randomly drawn from the range consisting of the mean age
plus/minus the standard deviation (equation 2).

If Hage > Agemax then Hage 7→ Agemean −Agestd + rand(2 ·Agestd) (2)

where Hage is an agent’s age, Agemax, Agemean, and Agestd are maximum, mean,
and standard deviation of the original empirical age dataset, respectively, and
rand() is a function that draws a random floating number between zero and the
assigned number.

Fig. 1. Shift of age structure over time in terms of number of agents per age class for
simple replacement algorithm (death age = 95, young age = 15)

The next modeling principle that we identified is drawn from a series of pub-
lications on regional structural change in Canada (e.g. [3], [15], [1]). It consists of
letting agents die with death probabilities derived from empirical life tables and
replacing them with agents with age one generation younger (equation 3). The
idea of replacing agents by agents of age minus the generation-cycle interval is
a widespread strategy. The widely used AgriPoliS model for simulating agricul-
tural policies (e.g. [4], [8]) also uses this idea, although in none of the reviewed
AgriPoliS publications this value was specifically given. In all three reviewed
publications on regional structural change, the generation-cycle interval was set
to 30 years, which the authors concede is an assumption.
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If rand(100) < Dage then Hage 7→ Hage −Gint (3)

Table 1. Parameter values used for implementing the selected principles for the Ghana-
ian case study

Value
Parameter (years) Explanation and Source

Hold 75 mean death age calculated from Dage over all ages
Hyoung 21 mean of minimum age Agemin and reproduction age Ginit

Agemax 95 maximum age derived from [12]
Agemin 15 minimum age derived from [12]
Hmean 46.3 mean age calculated from [12]
Hstd 14.1 standard deviation of age calculated from [12]
Gint 27 rural marriage age of males by [7]
Dage — death probability per age class using [5]

where Dage is the death probability for the agent’s age class, and Gint the
generation-cycle interval.

The third principle we derived from a publication by Millington et al. [11],
who also use life-table probabilities to model death, but replace the agent only
by a new agent with younger age if the deceasing agent is old enough to have
offspring. Millington et al. define this age as the minimum age an agent can
become farmer plus the empirical generation-cycle interval [11]. Accordingly,
the age of the new agent is assigned a random age between this minimum age
and the minimum age plus generation-cycle interval. Millington et al. reason that
if the ”dying” agent is not old enough to have offspring, it is replaced by another
random agent. Thus, in our terms, it simply obtains the age of another random
agent. Although Millington et al. also implemented other reasons to stop being
a farmer, we use an adapted version of this principle that only focuses on death
as a cause, which is sufficient for our purpose (equation 4).

If rand(100) < Dage

{
If Hage > Agemin + Ginit then Hage 7→ Agemin + rand(Ginit)
else Hage 7→ Hage of another random agent

(4)
where Agemin is the minimum age at which agents can be farmer.

In order to test these modeling principles, we implemented each of them and
calibrated them for a Ghanaian case study, namely the Atankwidi Catchment in
Upper East Ghana (Table 1). Own data collected in the field were used [12], and
life tables from the district from the same year [5]. The death probabilities were
derived from the life tables via extrapolation, since they covered only ages above
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Fig. 2. Initial observed age structure and simulated age structures after 300 time steps

sixty years. The source for the generation-cycle interval for males in rural Ghana
is unfortunately somewhat outdated (see [7]), but given the fact that cultural
change was slow during the last decades in the study area, and since we believe
that generation cycles of males are still high in rural West Africa, we decided to
stick to the reported value (Table 1).

We simulated each principle five times for 300 time steps (years) (the simu-
lation period was set this high to ensure convergence of the age structures (see
Figures 2 and 3)). Henceforth, with principle 1 we will refer to the principle
of LUDAS by [9] with principle 2 to that of the Canadian group (e.g. [3], and
with principle 3 to that largely following Millington et al. [11]. The simple al-
gorithm described above was also simulated, showing the behavior as discussed
above, i.e. the distribution simply shifted and was not maintained, resulting in
an up-and-down bounce of mean age and standard deviation (Figure 3). Imple-
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Fig. 3. Simulated age and standard deviation after 300 time steps

menting principle 1 on the other hand, which aimed at keeping the distribution
more-or-less stable, resulted in a convergence to a significantly higher mean age
and standard deviation over time (Figure 3). The reason is that the algorithm
assigns to new agents only values around the initial mean, thus removing the
low age values in the long term but maintaining high values, leading to a shift of
mean age in the positive direction over time. Furthermore, the shape of the age
structure converged to a significantly changed structure over time (Figure 2).
One of the causes for this significant change in structure shape is that agent life
was designed to end at the same age for all. Principles 2 and 3 solved this issue
by using death probabilities for ages classes, resulting in a smooth curve of the
right-hand side of the age structure (Figure 2). But both of them also showed
an increase of mean age and standard deviation (Figure 3).

The problem with these modeling principles is that one cannot determine
where the change in age structure comes from. Is it an account of real-world
change or is it caused by model assumptions, or is it even a bit of both? As
long as one does not model demographic change in detail, the model is prone to
forcing the modeller to make (possibly weak) assumptions. We do not claim that
these models are wrong, but the problem is that one cannot be sure that one is
right. We neither claim that one is not allowed to make assumptions, but that
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one should keep control what happens with these assumptions. That is, whether
the emergent age structure is the one that was indeed intended by assumption.
The solution that we propose is to externalize assumptions in such as way that
the shape of the age structure itself can be controlled. This implies for us to
develop a model that enables individual aging of agents on the one hand, but
on the other is able to adjust death and youth ages in such a way that the age
structure changes the way prescribed, as e.g. by expert opinion. This way, we
aim to offer a model that is cleaned from internal and potentially inaccurate
assumptions.

If (mean [age] of turtles > mean-age) [

while [mean [age] of turtles > mean-age] [

ask one-of turtles with [any? turtles with [age < [age] of myself]] [

set age [age] of one-of turtles with [age < [age] of myself]

ask turtles with [age != nobody] [set age-1 age set age+1 age]

set age-1 age - 1 set age+1 age + 1

while [

(abs(standard-deviation [age] of turtles - std) >

abs(standard-deviation [age-1] of turtles - std) and age > 15) or

(abs(standard-deviation [age] of turtles - std) >

abs(standard-deviation [age+1] of turtles - std))

] [

ifelse (abs(standard-deviation [age-1] of turtles - std) <

abs(standard-deviation [age+1] of turtles - std)) [

set age age - 1

]

[

set age age + 1

]

set age-1 age - 1 set age+1 age + 1

]

]

]

]

Fig. 4. First part of algorithm extension for equation 4 for improved aging modelling

3 An Improved Model for Simulating Aging of Farm
Agents

For developing such an improved model we decided to build on the model by
principle 3, since it comes closest to the observed structure in shape. We extended
the algorithm of principle 3 in such a way that the simulated mean and standard
deviation coincide with the prescribed mean and standard deviation. Please note
that the observed is not normally distributed (significant at 0.001 level with
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Kolmogorov-Smirnov test). But in the absence of other simple measures that
can describe the observed age structure, we went for the simplest available,
although we must concede that other important characteristics such as kurtosis
may not be maintained this way.

We extended the modelling principle 3 by an algorithm that adjusts deaths
and newcomer ages to match the prescribed mean and standard deviation. It
consists of two parts. The first part does adjustments when the mean is too high,
and the second when the mean is too low. The first part is depicted in NetLogo
4.1.3 code (Figure 4), while the second part has the same code except that the
”larger than” and ”lower than” signs in the first four lines are to be reversed.
In the first part, as long as the mean is lower than the prescribed mean (in the
algorithm: mean-age), a random agent with non-minimum age is selected and its
age is changed to the age of a random agent with lower age. Then, the age of this
adjusted agent is again adjusted in steps of one year until a minimum difference
between simulated standard deviation and prescribed standard deviation (in the
algorithm: std) is achieved. Thereat, the age is not allowed to fall below 15 years,
which is the minimum age boys can be household heads in the study area. The
explanation of the second part is analogous, given the reversal of the signs in
the first four lines.

We implemented this algorithm for the case-study data set (Table 1), and
conducted five test simulations for 300 years like for the other modeling princi-
ples. Results verify that the simulated mean and the standard deviation remain
constant at the prescribed mean and standard deviation, respectively (Figure
3), which we set to the initial observed values. Also, the shape of the age distri-
bution seems to mimic the age structure better than the other models (Figure
2, bottom right).

4 The Importance of Being Accurate: A Case Study

In order to illustrate what consequences the choice of modeling principle for
aging of farm agents can have, we implemented the selected algorithms in a
fully-fledged model for simulating land-use change in the selected study area.
The model is one of the model versions described in detail in [14] (version Ord-
L) and follows the modeling framework of the LUDAS family, from which we
derived the first modeling principle.

The LUDAS framework envisages the representation of the human-environ-
ment feedback loop via integrating both long-term change of farm livelihood
strategies and short-term system changes in the human land-use choice process
(for details see [10], [14]). This is implemented by household agents running a
land-use choice phase, in which patches are selected for use, i.e. their location,
land-use type, and management mode is selected, as long as the agent has suf-
ficient spare labor for management. Thereat, first owned patches are cultivated,
and then alien patches, as long as labor is available. The choice of land-use type is
modelled via multinomial logistic regression using environmental and household
variables, while the preference coefficients are dependent on the livelihood type
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Fig. 5. Simulated land-use areas (ha) over time
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of the agent. These livelihood types represent farm agent archetypes with typical
livelihood strategies, which is assigned to agents anew each time step, dependent
on the agent’s (changed) variable values. In this version, the management-mode
choice is simply modelled via assignment of categorical values dependent on
other agent and landscape characteristics. Models of ecological returns to these
decisions complete the model. These feed back into the agent’s livelihood and
agricultural choice routines. All used data and sub-models are based on data
collected during two household surveys conducted in 2006 ([13], [12]). The sim-
ulated land-use types comprised grassland as grazing land and the main staples
in the area, i.e. cereals, groundnut, and rice. The simulated area comprises an
area of 918 ha located in the Atankwidi Catchment, which is the same study
area from which age data were used above.

Fig. 6. Simulated mean age (years) and cereal area (ha) over time, rescaled

We simulated each principle 20 times for 40 years, which is the time period
that we estimate the model can more-or-less reproduce. Results clearly show
how sensitive the model is to the choice of aging sub-model (Figure 5 and 6),
where simulated areas of land use, in specific the staples highly correlated with
simulated mean age (Table 2). The reason for this correlation is that the land-use
choice model contains age as an explanatory variable. The selection of explana-
tory variables for the land-use choice model was based on hypotheses collected
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Table 2. Overall correlation between mean age (years) and land-use area (ha)

Correlation
Land-use type coefficient R2

Grassland 0.066 0.004
Groundnut -0.678 0.460
Cereal 0.710 0.504
Rice -0.601 0.361

in the field, which were (partially) confirmed statistically (see [14]). Age was
insofar selected as the field study indicated that younger farmers tended to fa-
vor the more cash-oriented staples groundnut and rice, while older individuals
rather opted for the traditional but subsistence-oriented cereal crops such as mil-
let and sorghum. This is also indicated by the results, where the large increase
in age under principle 1 is accompanied by an accordingly lower area of rice and
groundnut, and an accordingly larger area of cereal (Figure 5).

5 Summary

A review and test of aging models for farm agents showed that they, using the
same database, converge to different age structures over time. Each of the simu-
lated age structures differed from the observed age structure in a different way.
The problem is that it is not clear whether simulated emergent change is an
account of real-world change or a result of inaccurate assumptions, or a bit of
both. And one cannot identify for which algorithm which of these causes ap-
ply. Further, it is not clear whether authors tested the assumptions made in
their models, i.e. whether the resulting age structure is in line with their global
understanding of how the structures would evolve. Therefore, we argue that as-
sumptions for variables whose change over time is not or little known should
be held under control at the emergent global level. In this article, we aimed to
offer such an algorithm for aging of farm agents, and showed that it is able to
match the age distribution prescribed over time, but also lets agents age by one
year every annual time step. We finally illustrated what effects the choice among
presented algorithms can have, using a case-study model for land-use change in
Northern Ghana. Results suggest that the selection of aging model is one of the
major factors that determines both the direction and extent of land-use change
in the case-study model.
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